Torque Teno Virus as a new biomarker for immune-competence in HIV infected patients

Nadine Lübke & Livia Schmidt

Institute of Virology Düsseldorf
on behalf of the RESINA-Study Team
Torque Teno Virus (TTV)

- Former called Transfusion Transmitted Virus
- Single strand, negative-sense, non-coated DNA virus
- belongs to the group of anelloviruses that compose a large fraction of the human total blood virome
- Not known to cause any clinical manifestations in humans
- High prevalent in the regular population with reported infection rates of >90%
 - 69% in 551 healthy blood donors in southern Brazil (Mazzola, Saito et al. 2015)
 - 6, 34 and 90% of healthy Japanese children aged 1, 4 and 42 months, and in 84% of adults. (Naganuma, Tominaga et al. 2008)
TTV as immune marker

- proposed as a marker of immune function
 - in patients receiving immunosuppression after *solid organ transplantation* (e.g. lung, kidney, liver) (Görzer et al., 2015; Schiemann et al., 2017; Kazemi et al., 2015)
 - in patients following *allogeneic hematopoietic stem cell transplantation* (HSCT) (Gilles et al., 2017; Albert et al., 2018)
 - HIV infected patients (Shibayama et al., 2001; García-Álvarez et al., 2012)

- Helps to estimate the risk of opportunistic infections, post-transplant complications and antibody mediated organ rejection
viral loads of TTV were significantly higher in the HIV-group and the HIV/HCV-group than the Control-group (p<0.05)
viral loads of TTV were significantly higher in HIV infected and HIV/HCV-coinfected patients with HIV viral load ≥ 50 copies/mL ($p<0.05$)
TTV load and CD4 cell count

Table 3. Comparison of the titres of TT virus DNA detectable by untranslated region polymerase chain reaction or N22 polymerase chain reaction in HIV-infected patients stratified by various demographic features.

<table>
<thead>
<tr>
<th>Feature</th>
<th>UTR PCR</th>
<th>N22 PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>TTV DNA (10^9/ml)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>123</td>
<td>4.6 ± 1.2*</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>4.3 ± 0.9</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–39</td>
<td>83</td>
<td>4.4 ± 1.1</td>
</tr>
<tr>
<td>40–69</td>
<td>60</td>
<td>4.7 ± 1.2</td>
</tr>
<tr>
<td>Co-infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV</td>
<td>23</td>
<td>4.7 ± 1.0</td>
</tr>
<tr>
<td>HBV</td>
<td>10</td>
<td>5.1 ± 1.1</td>
</tr>
<tr>
<td>(−)</td>
<td>110</td>
<td>4.5 ± 1.2</td>
</tr>
<tr>
<td>Risk factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemophilia</td>
<td>10</td>
<td>4.6 ± 1.3</td>
</tr>
<tr>
<td>Sexual contact</td>
<td>125</td>
<td>4.5 ± 1.1</td>
</tr>
<tr>
<td>Others</td>
<td>8</td>
<td>5.3 ± 1.8</td>
</tr>
<tr>
<td>HIV viral load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10^4/ml</td>
<td>67</td>
<td>4.2 ± 1.0</td>
</tr>
<tr>
<td>≥ 10^4/ml</td>
<td>76</td>
<td>4.8 ± 1.2</td>
</tr>
<tr>
<td>AIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>49</td>
<td>5.1 ± 1.4</td>
</tr>
<tr>
<td>No</td>
<td>94</td>
<td>4.2 ± 0.9</td>
</tr>
<tr>
<td>CD4 cell count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–100/mm³</td>
<td>46</td>
<td>5.2 ± 1.5</td>
</tr>
<tr>
<td>101–943/mm³</td>
<td>97</td>
<td>4.2 ± 0.9</td>
</tr>
<tr>
<td>total</td>
<td>143</td>
<td>4.5 ± 1.2</td>
</tr>
</tbody>
</table>

- Inverse relationship between the TTV load and the CD4 cell count in HIV infected patients

Shibayama et al., 2001
no correlation between T-cell activation and anelloviruses levels
During HIV infection immunodeficiency occurs and finally leads to AIDS.

Routine diagnostics:
- Viral load measurement
- Determination of the number of CD4+-T-cells

Viral load as a marker of the driving force of immune destruction.

CD4+-T-cell count shows the degree of destruction that occurred already.

No biomarker for the activity of the immune system, which shows the immune competence of the immune function:
- E.g. evaluation of induction-maintenance ART strategies
 - Possibility of ART simplification/reduction
- E.g. individualized concepts regarding screening for AIDS-diseases or Hodgkin’s lymphoma
Objective

- To evaluate the presence and load of TTV in peripheral blood as a new biomarker for immune-competence in HIV infected persons

Hypothesis

- Levels of plasma TTV DNA in HIV-1 infected patients
 1. Predict the degree of immune-recovery after ART initiation
 2. Correlate with risk of AIDS events after ART initiation

→ TTV load can be used as a new biomarker giving additional information for the monitoring of ART
European cooperation project: EuResist

Germany (University of Cologne and University of Düsseldorf)

Italy (University of Siena; Maurizio Zazzi, Andrea de Luca)

Schweden (Karolinska Institute; Anders Sönnerborg)

The project is divided into two sub studies:

1. **Pilot study**: To study whether TTV load is associated with immune recovery in asymptomatic HIV-infected patients with stable virological suppression under ART

2. **Case control study**: TTV viremia is associated with the risk of AIDS events given a certain level of CD4
Pilot study - Inclusion criteria

- HIV-1 infection (RESINA study)
- No AIDS-Event before start of ART or during the first 3 months on ART
- CD4 cell count < 500 / µl at the start
- Viral load decrease to < 200 HIV RNA copies per ml without rebound in the subsequent one year
Patients classification

- three groups depending on the CD4 cell increase after 1 year ART

<table>
<thead>
<tr>
<th>Group</th>
<th>CD4 increase (cells/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>< 50</td>
</tr>
<tr>
<td>B</td>
<td>50 – 200</td>
</tr>
<tr>
<td>C</td>
<td>> 200</td>
</tr>
</tbody>
</table>

- three groups depending on the CD4 cell count at baseline

<table>
<thead>
<tr>
<th>Group</th>
<th>CD4 baseline (cells/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 100</td>
</tr>
<tr>
<td>2</td>
<td>100 - 300</td>
</tr>
<tr>
<td>3</td>
<td>> 300</td>
</tr>
</tbody>
</table>
Material

- Plasma samples from RESINA cohort, selected independent of HI viral load
- Collected from 2001 to 2016
- Baseline samples -> **before** ART initiation
- One sample per patient
Methods

- DNA extraction of plasma samples
- TTV-DNA quantification by use of Realtime-PCR
- Primers and probe:
 - **AMTS**
 - $5'$-GTG CCG IAG GTG AGT TTA-3'$
 - 18 bp
 - **AMTAS**
 - $5'$-AGC CCG GCC AGT CC-3'$
 - 14 bp
 - **AMTPTU**
 - $5'$-FAM-TCA AGG GGC AAT TCG GGC T-3'TAMRA
 - 19 bp
- PCR protocol and standards from Vienna
 - standards were stabilized in Cologne
- Statistical elements were performed with ANOVA

https://www.biocompare.com/Product-Reviews/167240-Solid-workhorse-machine/
301 samples were analysed for TTV plasma levels

Group A underrepresented due to low number of patients fulfilling the inclusion criteria
TTV prevalence in HIV-infected patients

- 96% TTV plasma positive
 - only 12/301 TTV negative patients (4%)
- Patients with Low CD4 gain in the first year of ART (group A) showed all TT viremia (100%)
TTV viral load correlates with CD4 cell count

- TTV plasma DNA is significantly increased with reduced CD4 cell counts ($p=0.0074$)
TT viral load correlates with CD4 values at therapy start

- Significantly higher TT viral loads with lower CD4 cell counts (p=0.0171)
TT viremia depending on CD4 gain

- Group A 100% TTV positive
- TT viremia was increased with retarded CD4 reconstitution (n.s.)
- TTV DNA <2400 cop/ml is predictive for a CD4 increase > 50 cell/µl in the first year on ART

A: CD4 gain < 50 cells/µl
B: CD4 gain 50 - 200 cells/µl
C: CD4 gain > 200 cells/µl
Summary and conclusions

- High TTV prevalence in RESINA cohort (96%)
- Significantly higher TT plasma levels with lower CD4 cell count before ART initiation
- TTV DNA <2400 cop/ml is predictive for an adequate immune reconstitution
- Multiple correlation analysis (age, sex, HIV-RNA)
 - → no impact on CD4 gain (data not shown)

Conclusion

- TTV plasma levels could help predict the degree of immune-recovery after ART initiation
Next steps:

- Case controle study (Pia Esser, Cologne)
 - TTV viremia is associated with the risk of AIDS events given a certain level of CD4

- Longitudinal TTV monitoring
 - Prospective screening of HIV patients for TTV DNA
Acknowledgments

Institute of Virology, University of Düsseldorf

Livia Schmidt
Ortwin Adams
Jörg Timm
Iris Hermann
Claas Schmidt

Dept Gastroenterologie, Hepatology, Infectiology, University Clinics of Düsseldorf
Björn Jensen, André Fuchs, Dieter Häussinger

Frank Wiesmann, Patrick Braun, Heribert Knechten

AREVIR- and RESINA-partners...
Mark Oette, Dept. Gastroenterologie, Augustinerinnen Hospital, Cologne

Martin Hover, Dept. Infectiology, Hospital Dortmund

Institute of Virology, University of Cologne

Rolf Kaiser
Lisa Hüsgen
Elena Knops
Veronica Di Cristanziano
Michael Böhm
Claudia Müller
Saleta Sierra-Aragon
Eva Heger

Norbert Bannert, Barbara Bartmeyer, Osama Hamouda, Klaus Jansen, Claudia Kücherer, Robert Koch Institut (RKI), Berlin